

Python for Scientists

For many scientists, the open-source nature of Python is intimidating. They’d like to use Python and Jupyter notebooks, but they don’t know how to begin. Proprietary software like Matlab and Mathematica comes pre-packaged and ready out-of-the-box, but Python is less straightforward. Our goal is to provide a quick guide to help scientists get started.

4 steps to Python for scientists:

	Install Python using Miniconda

	Install the Jupyter Notebook

	Install core scientific packages

	Run the Jupyter Notebook

[image: _images/notebook1.png]

Setting up Scientific Python

	4 steps to Python

	Virtual Environments

	ipython Kernels

	Frequently Asked Questions

Scientific Python Packages

	Plotting Packages

	Core Scientific Packages

	Advanced Scientific Packages

Was this page helpful?

Let us know by visiting this page [https://github.com/Zsailer/python-setup-for-scientists/issues/4] and giving it a “thumbs up”.

[image: _images/thumbs-up.png]
 [https://github.com/Zsailer/python-setup-for-scientists/issues/4]Please feel free to open an issue [https://github.com/Zsailer/python-setup-for-scientists/issues/new] if:

	You have a topic you’d like us to add or,

	You find problems in our instructions.

4 steps to Python

	Install Python using Miniconda

	Install the Jupyter Notebook

	Install core scientific packages

	Run the Jupyter Notebook

1. Install Python using Miniconda

[image: ../_images/miniconda.png]
We recommend Miniconda [https://conda.io/miniconda.html] (even if you have Python already installed).

Miniconda installers contains Python and the Conda [https://conda.io/docs/] package manager. Installers [https://conda.io/miniconda.html] exist for Windows, Mac, and Linux. Download the installer that matches your operating system and follow the directions to install miniconda on your computer. Except in very special circumstances, we recommend installing Python 3. (Why?)

Once installed, Miniconda becomes a folder that contains everything Python and Conda related. If anything ever goes wrong with your Python setup, you can always remove the Miniconda folder and start over.

Conda will be your main tool for installing Python packages moving forward. It installs packages through a mechanism known as conda-recipes. (It’s important to note, it can do `many other`_ things as well.) Conda also manages package updates and creates virtual environments.

pip is another tool for installing Python packages (and comes with Miniconda). If a conda-recipe does not exist for a package, you can try installing using pip.

2. Install the Jupyter Notebook.

To install new Python packages using Conda, you’ll need to use a command line [https://en.wikipedia.org/wiki/Command-line_interface].

On Windows, use the new Anaconda prompt application installed by Miniconda.

On Mac and Linux, use the Terminal application.

[image: ../_images/terminal.png]
In general, you’ll type conda install some_package_name to install new packages. If conda cannot find the package, try using pip.

Installing with conda
> conda install some_package_name

Installing with pip
> pip install some_package_name

3. Install core scientific packages

[image: ../_images/notebook.png]
Before you run Jupyter, you’ll want to install some core scientific packages. These packages allow you to produce awesome notebooks like the one shown to the right.

	Matplotlib [https://matplotlib.org/] is Python’s most popular plotting package.

	Numpy [http://www.numpy.org/] and SciPy [https://www.scipy.org/] are Python’s fundamental packages for scientific computing.

> conda install numpy scipy matplotlib

A more comprehensive list of Python packages for scientific computing can be found here.

4. Run the Jupyter Notebook

Open Jupyter Notebooks using the command line again (why?). Run the following command:

> jupyter notebook

Your output on the command line will look something like this:

[image: ../_images/jupyter-terminal.png]
And the notebook application will launch in a browser window.

Virtual Environments

	Default Conda Environment

	Creating a Python 2.7 Environment

	Creating a TensorFlow Environment

	Creating and using a Development Environment

You may be wondering:

What is a virtual environment?

Why would you want a virtual environment?

1. Default Conda Environment

Here is a graphical representation of what you have when you start out using conda:

[image: ../_images/environments_folders-1.png]
This is your default python environment.
It uses python 3.6 and has any packages that we’ve installed using either the
pip or conda commands.

2. Creating a Python 2.7 Environment

This is all well and good, but what if you need to use python 2.7 for a particular
application or problem?
This is an excellent opportunity to use a virtual environment in conda.
A virtual environment creates a copy of your miniconda environment with a
specific python version and only the packages you want.

This is how you create a virtual environment using conda:

conda create -n python2 python=2.7 matplotlib pandas

The field after -n is the name of your environment, the python= flag is
where you specify your python version, and you can add package names that you
already have installed in your default miniconda.

Here is the result of creating our python 2.7 virtual environment:

[image: ../_images/environments_folders-2.png]
In order to use this environment you will have to activate it:

Old conda
source activate python2

New conda
conda activate python2

And when you want to switch back to your default:

Old conda
source deactivate

New conda
conda deactivate

3. Creating a TensorFlow Environment

Now say that you want to install TensorFlow, but you don’t want to accidentally
kill your default python by installing it or you want to make sure that you can
easily uninstall it later. A virtual environment is great for this purpose too.

conda create -n Tensorflow python=3.6 numpy

Now activate the environment

conda activate Tensorflow

Then install tensorflow

pip install tensorflow

Now you’re available environments will look like this:

[image: ../_images/environments_folders-3.png]

4. Creating and using a Development Environment

One more reason that you might want a virtual environment is for developing your
own packages. Say you’ve got a package called “test” that you want to test out as
you develop it. Create a virtual environment with the packages you need and then
install your package with pip in editable mode.

Create the environment
conda create -n Test python=3.6 pandas matplotlib

Activate this new environment
conda activate Test

Then install your local package
pip install -e /path/to/your/package/test

Now your available environments will include your test development environment.

[image: ../_images/environments_folders-4.png]

What is a virtual environment?

A virtual environment is a self-contained version of Python and specified
packages. When you switch to a different virtual environment conda points to
that python installation and installed packages. A package installed globally
but not in that virtual environment won’t show up.

Why would you want a virtual environment?

Virtual environments are a good way to protect yourself. Say you accidentally
install or delete something, if you’re in a virtual environment you can delete
it and start over without reinstalling Python.

ipython Kernels

	Going from virtual environments to kernels

	Making an ipython kernel

1. Going from virtual environments to kernels

Virtual environments are a nice way to compartmentalize your coding environment,
but you can’t make use of them in a jupyter notebook automatically.

What you need to do is create a kernel that is associated with each virtual
environment. What is a kernel?

The cool thing is that once you create a kernel you don’t have to change virtual
environments to use them in the jupyter notebook!

2. Making an ipython kernel

Activate your virtual environment
source activate Python-2.7

Install ipykernel
pip install ipykernel

Create your ipykernel
python -m ipykernel install --user --name Python-2.7 --display-name "Python 2.7"

Now this kernel can be used in a jupyter notebook or jupyter lab without having to activate the
associated virtual environment.

[image: ../_images/notebook_kernel.png]
[image: ../_images/lab_kernel.png]
And this reflects our available virtual environments that we set up before.

[image: ../_images/environments_folders-2.png]

What is a kernel?

A kernel is the engine that actually runs your code. Using Jupyter you can have
a kernel for each virtual environment and even kernels for languages other than
Python.

Frequently Asked Questions

How do I upgrade a python package that is already installed?

Sometimes you need to upgrade to a new version of a package that is already installed in your python environment.

To upgrade a package in your python environment, just use conda! For example to upgrade the scipy package library run the following:

conda update scipy

Should I install Python 2 or 3?

Python 3. Most scientific Python libraries now support Python 3 and it’s a better language overall. Do not install Python 2 unless you absolutely must use it for some core dependency in your daily work.

What if my operating system already comes with Python installed?

It’s best not to mess with the native Python on your machine. On Macs, many programs depend on that native Python. If you break it, you can break your Mac.

What is the difference between conda and pip?

conda— is command line tool that downloads conda-recipes from a repository hosted by Continuum Analytics [https://www.anaconda.com/]. One strength is that conda-recipes can be written for any programming language (not just Python). This is extremely useful for projects like Jupyter who weave Javascript tools with Python backends. Conda is quickly becoming a widely used installer for this reason. Further, developers at Continuum are working out ways to make pip and conda work together seamlessly.

pip— a command line tool that downloads Python packages from PyPI, Python’s Packaging Index. It is designed to manage Python packages only.

conda is a younger than pip, so many Python packages don’t have conda-recipes but exist on PyPI.

Why do I need to launch Jupyter from the command line?

The answer is a bit complicated. Jupyter is web application frontend (written in Javascript) that executes code from a Python server backend. The command line is used to launch the server backend and open internet ports for the frontend. This frontend is rendered using a browser (like Google Chrome or Firefox). The command line interface makes this process transparent. You see the server start, then a browser window opens. The command line also provides flexibility for advanced users.

If you’d like a Jupyter-like Desktop application, it exists. It’s called nteract. You can open Jupyter notebooks without the command-line. It can be found here [https://nteract.io/]!

Why is Matplotlib a source of friction among computational scientists?

Plotting Packages

The Python visualization landscape [https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017] is fairly diverse. We’ll list a few of the major plotting packages here:

	Matplotlib — Python’s most used plotting library.

	Seaborn — Statistical plotting functions and better matplotlib aesthetics.

	Pandas.plot — Declarative plotting directly from a Pandas DataFrame.

	Altair — Declarative plotting powered by Vega.

	pdvega — Vega-lite plots from Pandas DataFrames.

Matplotlib

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and four graphical user interface toolkits.

Why all the negativity around Matplotlib?

Docs [https://matplotlib.org/] | Source [https://github.com/matplotlib/matplotlib] | Gallery

[image: ../_images/sphx_glr_plot_mpl_scatter_thumb.png]
Scatter Chart

[image: ../_images/sphx_glr_plot_mpl_line_thumb.png]
Line Chart

[image: ../_images/sphx_glr_plot_mpl_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_mpl_histogram_thumb.png]
Histogram

[image: ../_images/sphx_glr_plot_mpl_boxplot_thumb.png]
Boxplot

Seaborn

Seaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels.

Docs [http://seaborn.pydata.org/] | Source [https://github.com/mwaskom/seaborn] | Gallery

[image: ../_images/sphx_glr_plot_sns_scatter_thumb.png]
Scatter Chart

[image: ../_images/sphx_glr_plot_sns_line_thumb.png]
Line Plot

[image: ../_images/sphx_glr_plot_sns_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_sns_hist_thumb.png]
Histogram

[image: ../_images/sphx_glr_plot_sns_boxplot_thumb.png]
Boxplot

[image: ../_images/sphx_glr_plot_sns_heatmap_thumb.png]
Heatmap

[image: ../_images/sphx_glr_plot_sns_violin_thumb.png]
Violin Plot

Pandas.plot

Pandas provides a ggplot like API for creating plots from Pandas DataFrames.
This module is built on top of Matplotlib.

Docs [https://pandas.pydata.org/pandas-docs/stable/visualization.html#basic-plotting-plot] | Source [https://github.com/pandas-dev/pandas] | Gallery

[image: ../_images/sphx_glr_plot_pd_scatter_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_pd_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_pd_hist_thumb.png]
Histogram

Altair

pdvega

Core Scientific Packages

This section introduces you to the core numerical libraries in Python. These libraries are essential for scientific computing in a Python environment.

[image: ../_images/numpy.png]
 [http://www.numpy.org/]

NumPy introduces arrays to python. Numpy arrays are an essential tool for scientific computing in Python. Arrays are an efficient way to perform computations on large datasets. A wide variety of functions for manipulating arrays and performing linear algebra calculations are included in NumPy.

To install NumPy in your python environment simply run:

conda install numpy

[image: ../_images/scipy_logo.png]
 [https://www.scipy.org/]

SciPy contains a broad range of useful tools for scientific computing including optimization functions, mathematical transforms, distance calculations, statistical tools, and image processing applications.

To install SciPy in your python environment simply run:

conda install scipy

[image: ../_images/pandas_logo.png]
 [https://pandas.pydata.org/]

Pandas brings the feel of spreadsheets to your python computing environment! Pandas provides powerful, easy-to-use data structures and analysis tools to help you handle your datasets. Pandas makes importing, navigating, and manipulating datasets easy!

To install pandas in your python environment simply run:

conda install pandas

Advanced Scientific Packages

This page introduces you to a set of powerful Python libraries for advanced numerical computing. Python has libraries for machine learning, model fitting, statistics, network calculations, and much more! Here we highlight the following important scientific libraries:

	scikit-learn — diverse machine learning tools

	scikit-image — image analysis

	LmFit — nonlinear fitting

	Networkx — network analysis

	Biopython — bioinformatics tools

	emcee — Bayesian MCMC

	PyMC3 — Probabilistic programming

	StatsModels — statistics

	Astropy —astrophysics tools

	Cython — simple C extensions

	Numba — just in time compiling for Python

	SymPy — executes symbolic math operations

	TensorFlow — deep learning

	Theano — deep learning

	Keras — deep learning

[image: ../_images/scikit-learn-logo.png]
 [http://scikit-learn.org/stable/]

scikit-learn is a powerful Python library for machine learning. It contains a wide array of useful tools for classification, regression, clustering, dimensionality reduction, and much more. Implementations are available for most standard machine learning algorithms, such as Support Vector Machines and Decision Trees. If you’re planning to do machine learning in Python, you’ll want to install scikit-learn.

To install this library in your Python environment simply run:

conda install scikit-learn

[image: ../_images/scikit-image-logo.png]
 [http://scikit-image.org/]

scikit-image is a very useful Python library for handling image data. It’s a powerful tool for image processing that allows users to identify objects, filter images, manipulate color channels, and a wide variety of other tasks.

To install this library in your Python environment simply run:

conda install scikit-image

[image: ../_images/LMFIT.png]
 [https://lmfit.github.io/lmfit-py/]

LmFit is a great tool for non-linear curve fitting. It uses SciPy under-the-hood, but offers a better interface. Specifically, it offers more control when estimating model parameters. If you’re going to be fitting complex data in Python, we suggest LmFit.

To install this library in your Python environment simply run:

conda install lmfit

[image: ../_images/networkx.png]
 [https://networkx.github.io/]

Networkx offers a simple interface for managing network data. It introduces a Graph datatype that is easy and intuitive to use. It also provides various algorithms for analyzing and plotting networks.

To install this library in your Python environment simply run:

conda install networkx

[image: ../_images/biopython_logo_xs.png]
 [http://biopython.org/]

Biopython is a libary built for biological computation. It contains a wide array of bioinformatics tools for handling sequence data, parsing files, searching databases, performing poulation genetics calculations, and much more.

To install this library in your Python environment simply run:

conda install biopython

[image: ../_images/emcee-logo-sidebar.png]
 [http://dfm.io/emcee/current/]

emcee is a Python library for efficiently estimating probability distributions. It uses an efficient MCMC sampling strategy that is often used to approximate posterior distributions in Bayes Theorem. If you’re looking to implement a Bayesian fit in your analysis we recommend using emcee.

To install this library in your Python environment simply run:

conda install emcee

[image: ../_images/PyMC3-logo.png]
 [https://docs.pymc.io/]

PyMC3 is another useful tool for implementing Bayesian inference in your analyses. PyMC3 is a versatile probabilistic programming framework that allows users to define probabilistic models directly in Python. Under the hood it uses a variety of clever trickes to make computations faster.

To install this library in your Python environment simply run:

conda install pymc3

[image: ../_images/statsmodels_hybi_banner.png]
 [https://www.statsmodels.org/stable/index.html]

StatsModels is a versatile statistical environment for Python. It allows users to perform a wide array of statistical tests and analyses. Various regressions are available for model fitting. It also includes tools for plotting and nonparametric statistics. If you’ll be implementing a lot of statistics in Python, StatsModels will likely be useful.

To install this library in your Python environment simply run:

conda install statsmodels

[image: ../_images/astropy-project.png]
 [http://www.astropy.org/]

If you’re an astrophysicist looking to use Python for your analyses, Astropy is for you. This library implements a range of methods, models, and statistics that are useful for astrophysical data.

To install this library in your Python environment simply run:

conda install astropy

[image: ../_images/cythonlogo.png]
 [http://cython.org/]

Cython is another library aimed at speeding up Python code. Users can write Python code and quickly translate it to a C extension.

To install this library in your Python environment simply run:

conda install cython

[image: ../_images/numba_blue_icon_rgb.png]
 [https://numba.pydata.org/]

Numba is a library designed to help you speed up your Python calculations. It achieves this goal using a just-in-time compiler, which gives Python code speed that is comparable in performance to C. Numba is easy to use. Python functions can be wrapped with a simple decorator that results in increased speed.

To install this library in your Python environment simply run:

conda install numba

[image: ../_images/SympyLogo.png]
 [http://www.sympy.org/en/index.html]

SymPy is a library for doing symbolic math. You can compute integrals, derivatives, algebraic manipulations, etc. Think Mathematica in Python.

To install this library in your Python environment simply run:

conda install sympy

[image: ../_images/TensorFlowLogo.png]
 [https://www.tensorflow.org/]

TensorFlow is a versatile library designed for implementations of deep learning algorithms. If you’re looking to use deep neural networks on your data, for example a large-scale image classification problem, then TensorFlow will likely be useful.

To install this library in your Python environment simply run:

conda install tensorflow

[image: ../_images/theano-logo.png]
 [http://deeplearning.net/software/theano/]

Theano is a library geared toward efficient computations on multidimensional arrays. It also supports implementation of code on GPUs. Theano is useful for implementing deep learning in Python.

To install this library in your Python environment simply run:

conda install theano

[image: ../_images/keras-logo.png]
 [https://keras.io/]

Keras is another Python library for machine learning using neural networks. It is capable of interacting with other machine learning libraries, including TensorFlow and Theano. Keras runs on CPUs and GPUs and is designed for fast implementation of neural networks.

To install this library in your Python environment simply run:

conda install keras

Index

Code examples

[image: ../_images/sphx_glr_plot_sns_heatmap_thumb.png]
Heatmap

[image: ../_images/sphx_glr_plot_pd_hist_thumb.png]
Histogram

[image: ../_images/sphx_glr_plot_altair_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_mpl_histogram_thumb.png]
Histogram

[image: ../_images/sphx_glr_plot_pd_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_pd_scatter_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_sns_boxplot_thumb.png]
Boxplot

[image: ../_images/sphx_glr_plot_mpl_scatter_thumb.png]
Scatter Chart

[image: ../_images/sphx_glr_plot_sns_hist_thumb.png]
Histogram

[image: ../_images/sphx_glr_plot_mpl_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_mpl_boxplot_thumb.png]
Boxplot

[image: ../_images/sphx_glr_plot_sns_line_thumb.png]
Line Plot

[image: ../_images/sphx_glr_plot_mpl_line_thumb.png]
Line Chart

[image: ../_images/sphx_glr_plot_sns_bar_thumb.png]
Bar Chart

[image: ../_images/sphx_glr_plot_sns_scatter_thumb.png]
Scatter Chart

[image: ../_images/sphx_glr_plot_sns_violin_thumb.png]
Violin Plot

Download all examples in Python source code: _examples_python.zip

Download all examples in Jupyter notebooks: _examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Bar Chart

Example bar chart.

import altair as alt
import pandas as pd

data = pd.DataFrame({
 'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
 'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

alt.Chart(data).mark_bar().encode(
 x='a',
 y='b'
)

Total running time of the script: (0 minutes 0.198 seconds)

Download Python source code: plot_altair_bar.py

Download Jupyter notebook: plot_altair_bar.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Bar Chart

Example bar chart.

[image: ../_images/sphx_glr_plot_mpl_bar_001.png]
import matplotlib.pyplot as plt
import seaborn as sns

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [3, 7, 2, 4, 6, 0, 2]

Add data a scatter points onto axes
ax.bar(x, y)

Name axes
ax.set_xlabel('x')
ax.set_ylabel('y')

Show figure.
fig.show()

Total running time of the script: (0 minutes 2.161 seconds)

Download Python source code: plot_mpl_bar.py

Download Jupyter notebook: plot_mpl_bar.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Boxplot

Example boxplot.

[image: ../_images/sphx_glr_plot_mpl_boxplot_001.png]
import matplotlib.pyplot as plt
import seaborn as sns

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [3, 7, 2, 4, 6, 0, 2]

Add data a scatter points onto axes
ax.boxplot([x, y])

add x labels
ax.set_xticklabels(["x", "y"])

Show figure.
fig.show()

Total running time of the script: (0 minutes 1.409 seconds)

Download Python source code: plot_mpl_boxplot.py

Download Jupyter notebook: plot_mpl_boxplot.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Histogram

Example histogram.

[image: ../_images/sphx_glr_plot_mpl_histogram_001.png]
import matplotlib.pyplot as plt
import numpy as np

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = np.random.normal(0, 0.1, 1000)

Add data a scatter points onto axes
ax.hist(x)

add x labels
ax.set_xlabel("x")

Show figure.
fig.show()

Total running time of the script: (0 minutes 0.048 seconds)

Download Python source code: plot_mpl_histogram.py

Download Jupyter notebook: plot_mpl_histogram.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Line Chart

Example bar chart.

[image: ../_images/sphx_glr_plot_mpl_line_001.png]
import matplotlib.pyplot as plt
import seaborn as sns

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [5, 3, 2, 1.5, 1, 0.5, 0.4]

Add data as scatter points onto axes
ax.plot(x, y)

Name axes
ax.set_xlabel('x')
ax.set_ylabel('y')

Show figure.
fig.show()

Total running time of the script: (0 minutes 0.052 seconds)

Download Python source code: plot_mpl_line.py

Download Jupyter notebook: plot_mpl_line.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Scatter Chart

Example scatter chart

[image: ../_images/sphx_glr_plot_mpl_scatter_001.png]
import matplotlib.pyplot as plt

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [3, 7, 2, 4, 6, 0, 2]

Add data a scatter points onto axes
ax.scatter(x, y)

Name axes
ax.set_xlabel('x')
ax.set_ylabel('y')

Show figure.
fig.show()

Total running time of the script: (0 minutes 0.024 seconds)

Download Python source code: plot_mpl_scatter.py

Download Jupyter notebook: plot_mpl_scatter.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Bar Chart

Example bar chart.

[image: ../_images/sphx_glr_plot_pd_bar_001.png]
import matplotlib.pyplot as plt
import pandas as pd

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
df = pd.DataFrame({
 'x': [0, 1, 2, 3, 4, 5, 6],
 'y': [3, 7, 2, 4, 6, 0, 2]

})

Plot data.
df.plot.bar(
 x='x',
 y='y',
 ax=ax
)

Total running time of the script: (0 minutes 0.219 seconds)

Download Python source code: plot_pd_bar.py

Download Jupyter notebook: plot_pd_bar.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Histogram

Example histogram

[image: ../_images/sphx_glr_plot_pd_hist_001.png]
import numpy as np
import pandas as pd

Generate random normal data
x = np.random.normal(0, 0.1, 1000)

Convert to pandas DataFrame
df = pd.DataFrame({
 'x': x
 })

Plot histogram
hist = df.hist(bins=50)

Total running time of the script: (0 minutes 0.398 seconds)

Download Python source code: plot_pd_hist.py

Download Jupyter notebook: plot_pd_hist.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Bar Chart

Example bar chart.

[image: ../_images/sphx_glr_plot_pd_scatter_001.png]
import matplotlib.pyplot as plt
import pandas as pd

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
df = pd.DataFrame({
 'x': [0, 1, 2, 3, 4, 5, 6],
 'y': [3, 7, 2, 4, 6, 0, 2]
})

Plot data.
df.plot.scatter(
 x='x',
 y='y',
 ax=ax
)

Total running time of the script: (0 minutes 0.049 seconds)

Download Python source code: plot_pd_scatter.py

Download Jupyter notebook: plot_pd_scatter.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Bar Chart

Example bar chart.

[image: ../_images/sphx_glr_plot_sns_bar_001.png]
import matplotlib.pyplot as plt
import seaborn as sns

sns.set()

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [3, 7, 2, 4, 6, 0, 2]

Add data a scatter points onto axes
ax.bar(x, y)

Name axes
ax.set_xlabel('x')
ax.set_ylabel('y')

Show figure.
fig.show()

Total running time of the script: (0 minutes 0.707 seconds)

Download Python source code: plot_sns_bar.py

Download Jupyter notebook: plot_sns_bar.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Boxplot

Example boxplot.

[image: ../_images/sphx_glr_plot_sns_boxplot_001.png]
import seaborn as sns
import numpy as np

sns.set()

Generate data
a = np.random.normal(0, 0.1, 1000)
b = np.random.normal(1, 0.1, 1000)

Generate a boxplot
ax = sns.boxplot(data=(a,b))

Name axes
ax.set_xlabel('Category')
ax.set_ylabel('Measurement')
ax.set_xticklabels({"a":0, "b":1})

Total running time of the script: (0 minutes 0.747 seconds)

Download Python source code: plot_sns_boxplot.py

Download Jupyter notebook: plot_sns_boxplot.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Heatmap

Example heatmap

[image: ../_images/sphx_glr_plot_sns_heatmap_001.png]
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

np.random.seed(0)
sns.set()

Data for plot
uniform_data = np.random.rand(10, 12)

Plot heatmap
ax = sns.heatmap(uniform_data)

Total running time of the script: (0 minutes 0.833 seconds)

Download Python source code: plot_sns_heatmap.py

Download Jupyter notebook: plot_sns_heatmap.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Histogram

Example histogram

[image: ../_images/sphx_glr_plot_sns_hist_001.png]
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

sns.set()

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = np.random.normal(0, 0.1, 1000)

Add data a scatter points onto axes
ax.hist(x)

Name axes
ax.set_xlabel('x')

Show figure.
fig.show()

Total running time of the script: (0 minutes 1.349 seconds)

Download Python source code: plot_sns_hist.py

Download Jupyter notebook: plot_sns_hist.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Line Plot

Example line plot

[image: ../_images/sphx_glr_plot_sns_line_001.png]
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

sns.set()

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = np.linspace(0,100,100)
y = np.linspace(0,100,100)

Add data a scatter points onto axes
ax.plot(x, y)

Name axes
ax.set_xlabel('x');
ax.set_ylabel('y');

Total running time of the script: (0 minutes 0.049 seconds)

Download Python source code: plot_sns_line.py

Download Jupyter notebook: plot_sns_line.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Scatter Chart

Example scatter chart

[image: ../_images/sphx_glr_plot_sns_scatter_001.png]
import matplotlib.pyplot as plt
import seaborn as sns

sns.set()

Initialize a figure and axes object
fig, ax = plt.subplots(figsize=(3,3))

Data
x = [0, 1, 2, 3, 4, 5, 6]
y = [3, 7, 2, 4, 6, 0, 2]

Add data and scatter points onto axes
ax.scatter(x, y)

Name axes
ax.set_xlabel('x')
ax.set_ylabel('y')

Show figure.
fig.show()

Total running time of the script: (0 minutes 0.100 seconds)

Download Python source code: plot_sns_scatter.py

Download Jupyter notebook: plot_sns_scatter.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Violin Plot

Example Violin Plot

[image: ../_images/sphx_glr_plot_sns_violin_001.png]
import numpy as np
import seaborn as sns

sns.set()

Create a random dataset across several variables
rs = np.random.RandomState(0)
n, p = 40, 8
d = rs.normal(0, 2, (n, p))
d += np.log(np.arange(1, p + 1)) * -5 + 10

Use cubehelix to get a custom sequential palette
pal = sns.cubehelix_palette(p, rot=-.5, dark=.3)

Show each distribution with both violins and points
sns.violinplot(data=d, palette=pal, inner="points");

Total running time of the script: (0 minutes 0.101 seconds)

Download Python source code: plot_sns_violin.py

Download Jupyter notebook: plot_sns_violin.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 _static/file.png

_static/down.png

_static/minus.png

_static/no_image.png

_images/LMFIT.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_images/PyMC3-logo.png
4JPYMC3

nav.xhtml

 Table of Contents

 		
 Python for Scientists

 		
 4 steps to Python

 		
 1. Install Python using Miniconda

 		
 2. Install the Jupyter Notebook.

 		
 3. Install core scientific packages

 		
 4. Run the Jupyter Notebook

 		
 Virtual Environments

 		
 1. Default Conda Environment

 		
 2. Creating a Python 2.7 Environment

 		
 3. Creating a TensorFlow Environment

 		
 4. Creating and using a Development Environment

 		
 What is a virtual environment?

 		
 Why would you want a virtual environment?

 		
 ipython Kernels

 		
 1. Going from virtual environments to kernels

 		
 2. Making an ipython kernel

 		
 What is a kernel?

 		
 Frequently Asked Questions

 		
 How do I upgrade a python package that is already installed?

 		
 Should I install Python 2 or 3?

 		
 What if my operating system already comes with Python installed?

 		
 What is the difference between conda and pip?

 		
 Why do I need to launch Jupyter from the command line?

 		
 Why is Matplotlib a source of friction among computational scientists?

 		
 Plotting Packages

 		
 Matplotlib

 		
 Seaborn

 		
 Pandas.plot

 		
 Altair

 		
 pdvega

 		
 Core Scientific Packages

 		
 Advanced Scientific Packages

_images/astropy-project.png
Astro

_images/biopython_logo_xs.png
biopython

_images/SympyLogo.png

_images/TensorFlowLogo.png
TensorFlow

_images/environments_folders-1.png
\

MINICONDA

_images/environments_folders-2.png
\ \

MINICONDA Python-2.7

— \

@ python’

2.7

— \

matpl: tlib

— \ — \

pandas |1, i pandas .}

_images/cythonlogo.png
@gthon

_images/emcee-logo-sidebar.png
emcee

he MCMC Hammer

_images/environments_folders-3.png
\

MINICONDA

\

Python-2.7

— \

\

Tensorflow

@ python’

2.7

— \

matpl: tlib

— \

pandas

il

— \

@ python’

3.6

— \
' NumPy

T

TensorFlow

_images/environments_folders-4.png
\

MINICONDA

\

Python-2.7

— \

\

Tensorflow

@ python’

2.7

— \

matpl: tlib

— \

pandas

vl

— \

Test

@ python’

3.6

— \
. NumPy

T

TensorFlow

_images/jupyter-terminal.png
> jupyter notebook

[T 11:48:27.641 NotebookApp] Serving notebooks from local directory: /home/

[T 11:48:27.641 NotebookApp] @ active kernels

[T 11:48:27.641 NotebookApp] The Jupyter Notebook is running at:

[T 11:48:27.642 NotebookApp] http://localhost:8888/7token=<random token>?

[I 11:48:27.642 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

[C 11:48:27.645 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://localhost:8888/7?token=<random token>
[T 11:48:27.869 NotebookApp] Accepting one-time-token-authenticated connection
from ::1

.

_images/miniconda.png
EDOleoad
Install

— \

MINICONDA

— \

CONDA

— \

@ python

_images/networkx.png

_images/keras-logo.png

_images/lab_kernel.png
New Notebook
or Console

JUPYTER LAB

Change
Kernel

Start Preferred Kernel
v Python 3
Use No Kernel
No Kernel
Start Other Kernel

Python 2.7

Select Kernel

Use Kernel from Preferred Session
Use Kernel from Other Session
Untitle...
Untitle...

_images/notebook_kernel.png
JUPYTER NOTEBOOK

: Jupyter Untitled1 Last Checkpoint: 12 minutes ago (unsaved changes)
N €W File Edit

View Inset Cell Kernel Widgets Help Trusted | Python3 O
Notebook | .
+ 3« @B » v um mempt Change: o« o
Upload | New~ | J .
Restart
Notebook: L Ke rn e | l
'y Restart & Clear Output
Python 2.7 : *
In []: Restart & Run Al {
Python 3 jO 4
| Reconnect
Other: 0 Shutdown L
Text File o
Folder | Change kernel > ‘ Python 2.7
o !
Terminal ’ W Python 3

7 MNONIC A

_images/numba_blue_icon_rgb.png

_images/notebook.png
= Jupyter wecometoP

Fo

t View Inset Cal

=2+ xaB v >

ZJupyter

‘Welcome to the
Tris Notebook Server war

WARNING
Don'trely on this se

Your server is hosted that

Run some Python (
To run the code below:

1. Cickonthe cell osg
2. Press sareresTER

A tull tutorial for using the

In {]: tmatplotlib inline

import pandas as pd
1mport nuspy as np
import matplotlib

ZJupyter Lorenz Differential Equations mcss a
Flo Bt Vew et Col Komd Heb Pyinona ©
B+ k@B A > mC e £ ol Toobar: [Nore :
Exploring the Lorenz System
In tis Notobook we explor the Lorenz ysiem of diferontal acuatins:
oy -2
proy-x
ety

Tris s one of the classic systoms in non-linear diferontial quations. It exhibits a ango of
‘complex behaviors as the parameters (3, ,) aro vried, including what ar known as chaotic
Solutions. The systom was orginaly developed as a simplifid mathematical model for
amospheric convection n 1963

Tn (7)5 interact(Lorens, Nefixed(10), angle=(0.,360.),
0=(0.0,50.0) ,B=(0.,5), p=(0.0,50.0))

angle 308.2
macsme [
o o
v 2
. zs

_images/notebook1.png
= Jupyter wecometoP

Fo

t View Inset Cal

=2+ xaB v >

ZJupyter

‘Welcome to the
Tris Notebook Server war

WARNING
Don'trely on this se

Your server is hosted that

Run some Python (
To run the code below:

1. Cickonthe cell osg
2. Press sareresTER

A tull tutorial for using the

In {]: tmatplotlib inline

import pandas as pd
1mport nuspy as np
import matplotlib

ZJupyter Lorenz Differential Equations mcss a
Flo Bt Vew et Col Komd Heb Pyinona ©
B+ k@B A > mC e £ ol Toobar: [Nore :
Exploring the Lorenz System
In tis Notobook we explor the Lorenz ysiem of diferontal acuatins:
oy -2
proy-x
ety

Tris s one of the classic systoms in non-linear diferontial quations. It exhibits a ango of
‘complex behaviors as the parameters (3, ,) aro vried, including what ar known as chaotic
Solutions. The systom was orginaly developed as a simplifid mathematical model for
amospheric convection n 1963

Tn (7)5 interact(Lorens, Nefixed(10), angle=(0.,360.),
0=(0.0,50.0) ,B=(0.,5), p=(0.0,50.0))

angle 308.2
macsme [
o o
v 2
. zs

_images/pandas_logo.png
pandas

_images/scikit-image-logo.png
scikit-image

image processing in python

_images/numpy.png

_images/sphx_glr_plot_altair_bar_thumb.png

_images/sphx_glr_plot_mpl_bar_001.png

_images/scikit-learn-logo.png

_images/scipy_logo.png

_images/sphx_glr_plot_mpl_boxplot_thumb.png
~ o T Mmoo o

_images/sphx_glr_plot_mpl_bar_thumb.png
N N

_images/sphx_glr_plot_mpl_boxplot_001.png
~ ©mn T MmN oA O

_images/sphx_glr_plot_mpl_line_001.png

_images/sphx_glr_plot_mpl_line_thumb.png

_images/sphx_glr_plot_mpl_histogram_001.png

_images/sphx_glr_plot_mpl_histogram_thumb.png

_images/sphx_glr_plot_pd_bar_001.png
y

_images/sphx_glr_plot_pd_bar_thumb.png
i

_images/sphx_glr_plot_mpl_scatter_001.png

_images/sphx_glr_plot_mpl_scatter_thumb.png
~ e wm T MmN oo

_images/sphx_glr_plot_pd_hist_001.png

_images/sphx_glr_plot_pd_hist_thumb.png

_images/sphx_glr_plot_sns_bar_thumb.png

_images/sphx_glr_plot_sns_boxplot_001.png
12

10

© =
s 3

Juswainsespy

00

-02

Category

_images/sphx_glr_plot_pd_scatter_thumb.png
~ e wm T MmN oo

_images/sphx_glr_plot_sns_bar_001.png
7
6
5
4
>
3
2
0
0 2 4 6

X

_images/sphx_glr_plot_sns_heatmap_thumb.png

_images/sphx_glr_plot_sns_hist_001.png
250

200

150

100

_images/sphx_glr_plot_sns_boxplot_thumb.png
f——

H

Catogory

_images/sphx_glr_plot_sns_heatmap_001.png
0 1 2 3 4 5 6 7 8 9 10 11

_images/sphx_glr_plot_sns_hist_thumb.png
250

200

150

100

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/sphx_glr_plot_pd_scatter_001.png

_images/sphx_glr_plot_sns_violin_001.png
00000000

_images/sphx_glr_plot_sns_violin_thumb.png

_images/sphx_glr_plot_sns_scatter_001.png
~ ©mn T MmN Ao

_images/sphx_glr_plot_sns_scatter_thumb.png
~©w T MmN oo

_images/theano-logo.png
theano

_images/thumbs-up.png
Is this webpage helpful? #4

Zsailer opened this issue 27 days ago - 0 comments

S
g[Zsailer commented 27 days ago « edited v Owner

Is this webpage helpful?

Please give us a thumbs up if you found this page useful! Click on the smiley face in the top right
corner of this box!

If you have another topic that you think we should add, feel free to open a new issue!

_images/statsmodels_hybi_banner.png
§ ——

| StateMoolel
l) SM ! ¢ imgseifm Puthon

_images/terminal.png
Windows Mac/Linux

Anaconda Prompt (X X]

$ C:\Me\Miniconda3> conda install notebook

Macbook:~$ conda install notebook

_images/sphx_glr_plot_sns_line_001.png
100

80

60

20

0 25 50 75 100

_images/sphx_glr_plot_sns_line_thumb.png
100

80

60

20

0 25 50 75 100

_static/broken_example.png

_static/ajax-loader.gif

